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The lattice Boltzmann method has proven to be a promising method to simulate flow in porous media. Its
practical application often relies on parallel computation because of the demand for a large domain and fine
grid resolution to adequately resolve pore heterogeneity. The existing domain-decomposition methods for
parallel computation usually decompose a domain into a number of subdomains first and then recover the
interfaces and perform the load balance. Normally, the interface recovery and the load balance have to be
performed iteratively until an acceptable load balance is achieved; this costs time. In this paper we propose a
cell-based domain-decomposition method for parallel lattice Boltzmann simulation of flow in porous media.
Unlike the existing methods, the cell-based method performs the load balance first to divide the total number
of fluid cells into a number of groups �or subdomains�, in which the difference of fluid cells in each group is
either 0 or 1, depending on if the total number of fluid cells is a multiple of the processor numbers; the
interfaces between the subdomains are recovered at last. The cell-based method is to recover the interfaces
rather than the load balance; it does not need iteration and gives an exact load balance. The performance of the
proposed method is analyzed and compared using different computer systems; the results indicate that it
reaches the theoretical parallel efficiency. The method is then applied to simulate flow in a three-dimensional
porous medium obtained with microfocus x-ray computed tomography to calculate the permeability, and the
result shows good agreement with the experimental data.
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I. INTRODUCTION

Modeling flow in porous media is of a growing interest in
a wide range of fields including food processing �1,2�, mate-
rial drying �3�, soil science �4,5�, petroleum engineering
�6,7�, and chemical engineering �8�. The study of flow in
porous media usually considers three scales �9,10�: pore
scale, representative elementary volume �REV� scale, and
regional scale. In the pore scale, a theoretical description of
the mass and momentum balances is based on physical-
chemical and thermodynamic understanding of the system,
from which a mathematical description of the mass and mo-
mentum balances is carried out. The balance equations at the
microscopic scale can be upscaled to macroscopic scale
through a volume averaging technique. For heterogeneous
porous media, averaging the results from the microscopic
scale to the macroscopic scale is normally conducted over a
REV. Therefore, modeling pore-scale flow in porous media is
imperative in understanding the impact of microscopic het-
erogeneity on the averaging procedure �9�.

Because of the difficulty of visualizing and quantifying
the complicated opaque three-dimensional morphology of
natural porous media, the earlier study of the pore-scale flow
is largely based on network models �3,11,12� in which the
pore structure is represented by the sites and bonds in a net-
work. The size of each site and bond is determined from a
given pore-size distribution, and the flow along each bond is

assumed to be a one-dimensional Poiseuille flow. Since the
network models highly idealize the complicated three-
dimensional pore geometry, they may give results signifi-
cantly different from real porous media.

The past decades have seen a rapid development in image
analysis techniques. These techniques, ranging from mag-
netic resonance imaging �13� to microfocus x-ray computed
tomography �14,15�, have been increasingly applied to visu-
alize and quantify the three-dimensional opaque porous me-
dia and flow process through them. For example, a high-
resolution computed x-ray topography can provide a
measurement of the complicated three-dimensional morphol-
ogy at a length scale as small as a few microns. These, to-
gether with the development of computer power and the ad-
vancement of computational physics, have made direct
simulation of microscopic flow in porous media feasible and
a renewed interest in many fields. One method particularly
suitable for modeling such flow is the lattice Boltzmann
method �LBM� �16–21�. The LBM is a technique of simu-
lating fluid flow based on kinetic theory. By appropriately
choosing the equilibrium distribution function at the micro-
scale, the LBM recovers the Navier-Stokes equations at the
macroscale. The LBM simulates fluid flow by calculating the
collisions and interactions between the particles moving on a
regular lattice in phase space, rather than directly solving the
Navier-Stokes �NS� equations. It is a direct simulation in
which the macroscopic variables such as density and velocity
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are evaluated by tracking the dynamics of the particles. One
of the simplest LBM is the lattice Bhatnagar-Gross-Krook
method �22,23�. Because of its simplicity in handling com-
plicated boundaries, the LBM has proven efficient to simu-
late pore-scale flow in porous media �24–30�. The standard
LBM gives errors in modeling incompressible flow as it ac-
tually recovers a compressible flow where the pressure is
proportional to fluid density. Effort has been made to reduce
such errors �31–34�.

Natural porous media are heterogeneous with a wide
pore-size distribution. In studying their macroscopic proper-
ties such as permeability via pore-scale flow simulation, a
large domain and fine grid resolution are required in order to
adequately resolve the pore heterogeneity. This will require
large computer resources and ultimately rely on parallel
computation in which memory optimization and effective
domain decomposition are essential.

A porous medium is characterized by its consisting of
pore and solid. In modeling flow through it, the easy way is
to store all the pores and solids. This is straightforward but
wastes core memory. Recently, Martys and Hagedorn �27�,
Pan et al. �35�, and Schulz et al. �36� used a sparse lattice
representation to store only the fluid cells. It is known that
uniformly decomposing a heterogeneous domain like a po-
rous medium for parallel computation is difficult, particu-
larly in the use of the sparse lattice representation where the
cells lose their natural ordering, making neighboring cells
unknown as a result. The existing domain-decomposition
methods usually divide a domain into a number of approxi-
mately equal subdomains using regular partitioning �37–39�
techniques. For example, Kandhai et al. �40� and Pan et al.
�35� use the recursive coordinate bisection method to parti-
tion a box in which the grids are decomposed into a number
of partitions in orthogonal directions; Schulz et al. �36� de-
compose a domain using the METIS package �41�. METIS is
based on the multilevel k-way partitioning. The recursive
bisection �RB� scheme and its variants are commonly used as
the initial k-way partitioning in the multilevel k-way parti-
tioning. In essence, it is difficult to decompose a highly het-
erogeneous domain like a porous medium into a number of
same-size subdomains using RB �40–42�. Moreover, the
multilevel partitioning scheme is computationally expensive
due to the cost of computing the three-dimensional interfaces
between subdomains to balance the load. Therefore, these
methods have the following drawbacks to decompose a po-
rous medium: waste of memory, load imbalance, complex
communication pattern, lack of nearest subdomain commu-
nication, expensive implementation, and inflexibility in deal-
ing with complicated geometry.

The work reported in this paper aims to propose a
domain-decomposition method for parallel LBM simulation
of fluid flow in porous media. Unlike the existing methods,
the proposed method is cell based. Combined with the use of
a sparse matrix to store only the fluid cells, the method di-
vides the total number of fluid cells evenly into a number of
groups and then assigns them to each processor. The differ-
ence of cell numbers in each processor is either 0 or 1, de-
pending on if the total number fluid cells is a multiple of the
number of processors. This not only saves core memory but
also results in exact load balance, improving computational

efficiency as a result. This paper is organized as follows:
Section II presents a modified LBM model for incompress-
ible flow; Sec. II gives the use of a sparse matrix to optimize
memory for parallel computation of flow in porous media;
Sec. IV reviews various domain-decomposition methods;
Sec. V introduces the proposed cell-based method and its
combination with the sparse matrix to solve flow in porous
media; Sec. VI shows the performance of the proposed
method using different computer systems, its comparison
with existing methods, and application to simulate flow in a
three-dimensional porous medium obtained using microfocus
x-ray computed tomography.

II. LATTICE BOLTZMANN METHOD
FOR INCOMPRESSIBLE FLOW

The standard LBM has been employed to simulate flow in
porous media �24–29�, and its error in approximating incom-
pressible flow has been analyzed �31–34�. The following lat-
tice Boltzmann method �31,33� is used in this paper:

f i�x + �i�t,t + �t� − f i�x,t� = −
1

�
�f i�x,t� − f i

eq�x,t�� , �1�

where f i�x , t� is the particle distribution function at position x
and time t in the direction of the velocity �i, f i

eq�x , t� is the
value of f i�x , t� in equilibrium—i.e., the equilibrium distribu-
tion function at position x and time t—and � is a single
relaxation time controlling the rate of f i�x , t� approaching
f i

eq�x , t�. The equilibrium distribution function is given by

f i
eq�x,t� = wi�� + 3��i · u� +

9

2
��i · u�2 −

3

2
u2� , �2�

where � is fluid density, �i is the ith particle velocity, and u is
the macroscopic momentum. In this work, the nineteen speed
model in three dimensions is used in which the 19 particle
velocities are �0,0,0�, �±� /�t , ±� /�t ,0�, �±� /�t ,0 , ±� /�t�,
�0, ±� /�t , ±� /�t�, �0,0 , ±� /�t�, �0, ±� /�t ,0�, and
�0,0 , ±� /�t , �. The corresponding weighting factors are �5�

wi =�
1

3
, ��i� = 0,

1

18
, ��i� = �/�t ,

1

36
, ��i� = 	2�/�t ,


 �3�

where � is the side length of the cubic cells and �t is time
step. The fluid density and macroscopic momentum in Eq.
�2� are calculated from

� = �
i=0

18

f i, �4�
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u = �
i=0

18

�i f i. �5�

Applying the Chapman-Enskog multiscale expansion to Eqs.
�1�–�5� gives the incompressible Navier-Stokes equations in
the steady case as follows:

� · u = 0 + O��2� , �6�

u · �u = − � �c2�� + v�2u + O��2� , �7�

where c=� /�t is the sound speed and v= �2�−1� /6 is the
kinematic viscosity. Excluding the high-order error O��2�,
Eqs. �6� and �7� are identical to the stationary incompressible
NS equations, in which the compressibility error is induced
because of the use of the modified equilibrium function
given in Eq. �2�.

III. MEMORY OPTIMIZATION

The workload distribution in traditional computational
fluid dynamics and the LBM increases as the number of fluid
cells increases. It is easy to store and compute the whole
lattice �37–39�. This is straightforward for parallel imple-
mentation but wastes core memory when applied to a porous
domain because the solid cells are not involved in the calcu-
lation.

For a structure like a porous medium that consists of pore
and solid obstacles, it is efficient to store only the fluid cells
because the locations of the fluid cells are explicitly known.
Martys and Hagedorn �27�, Zhang et al. �4,5�, Pan et al. �35�,
and Schulz et al. �36� have developed such an approach to
simulate flow in porous media. In their approach, the com-
putation is performed only for fluid cells. For a porous me-
dium with low porosity, the core memory saved from this
can be substantial. For example, for a three-dimensional do-
main consisting of N cells, the memory required, if storing
the whole lattice, for single-phase flow is

�2 � 19 � �size of�float�� + 4 � �size of�float��N ,

where the first term represents the 19 distribution functions
at the current and next time steps and the second term rep-
resents the fluid density and the three velocity components.
Assuming that a float variable needs 8-byte memory, the total
memory required by such storage is 336N bytes. While for
the same problem, if only storing the fluid cells, the total
memory required is

��2 � 19 � �size of�float�� + 4 � �size of�float�� + 3

� �size of�int.�� + 18 � �size of�int.��N ,

where � is the porosity, the first two terms are the same as
above, the third term represents the indices to identify the x,
y, and z coordinates of a cell, and the fourth term stores the
information to identify a cell’s 18 neighbors. Assuming that
each integer needs a 2-byte memory, the total required
memory for �=0.3 is 113.4N bytes; that is, the proposed
method saves approximately 2/3 memory compared to the
conventional method.

IV. DOMAIN DECOMPOSITION: BACKGROUND

Two commonly used approaches to decompose a domain
�40� are slice, box, and cube scheme and recursive bisection
techniques.

A. Slice, box, and cube partitioning scheme

The traditional slice, box, and cube domain decomposi-
tions are based on equal-subdomain partitioning techniques
�37–39,42�. The slice partitioning in one dimension divides
the grids into slices corresponding to processor numbers, so
that each slice has the same volume of meshes. The box
partitioning in two dimensions uses two orthogonal one-
dimensional slices to partition the domain: first, the volume
is decomposed into vertical slices, then they are sliced hori-
zontally, and finally the two partitions are overlapped and the
resulting partitioned boxes �whose number is equal to verti-
cal partitions�horizontal partitions� are assigned to the pro-
cessors. Similarly, the three-dimensional cube partitioning
uses three orthogonal one-dimensional slices to partition a
domain. Although these traditional approaches can get a
good load balance and communication locality for regular
geometries, it is difficult for them to decompose a complex
geometry with a good load balance.

B. Recursive bisection techniques

The recursive coordinate bisection �RCB� technique is the
most intuitive recursive bisection technique. It recursively
decomposes a domain into two parts of equal size along the
orthogonal coordinate directions at each step until k parti-
tions are generated. Because RCB does not use connectivity
information, the partitions may be disconnected and have
many grid-edges across the partition boundaries. This prob-
lem can be overcome by recursive bisections, such as recur-
sive graph bisection �RGB� and recursive spectral bisection
�RSB�.

Domain decomposition techniques such as multilevel
k-way partitioning �43,44�, dynamic mesh partitioning
schemes �45,46�, and space-filling curves �SFC’s� �47� have
been developed and been used in packages such as METIS

�41� and DRAMA �46�. However, it should be mentioned that
both multilevel k-way and dynamic mesh partitioning are
based on RCB, RGB, or RSB. For example, the multilevel
graph partitioning consists of three phases: coarsening phase,
initial partitioning phase, and refinement phase. The initial
partitioning phase of the coarsest graph based on RB is cru-
cial in the overall partitioning paradigm as the follow-up
refinement has only limited capability to improve the quality
of the initial partitioning. In the initial partitioning phase, a
two-way partitioning is firstly obtained for a k-way partition-
ing, and then another two-way partitioning of each resulting
partition is recursively obtained. After log k phases, the do-
main is partitioned into k partitions. Thus the problem of
performing a k-way partitioning is reduced to performing a
sequence of bisections. The initial partitioning phase is to
minimize the edge cut and to make the size of the subdo-
mains roughly the same. Since the RB techniques are unable
to simultaneously obtain exact load balance, regular commu-
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nication pattern, and the nearest communication connection
in the coarsening and the initial k-way partitioning phases, a
follow-up refinement has to be performed to balance the load
after the initial partitioning. In the refinement phase, the
number of cells in each subdomain is counted. Because the
cell numbers in each subdomain are not the same, some cells
have to be moved among the subdomains to balance the load.
Generally, it is impossible to reach the exact load balance by
moving the cells only once; hence, resorting and researching
iterations are needed, costing more CPU time and giving rise
to an irregular communication pattern and no-nearest com-
munication connection. Furthermore, the multilevel parti-
tioning may result in many different results in coarsening,
initial partitioning, and refinement; it thus needs an optimi-
zation algorithm to find the best one. The advanced multi-
level partitioning schemes can handle multiple-constraint
and multiple-objective problems, but they are still difficult to
use in problems such as highly heterogeneous porous media
�40,41�. Methods including scattered decomposition �modu-
lar mapping� have been developed to handle highly irregular
domains, but the load balance in them is achieved at the
expense of increasing the overhead communication between
the partitions that are not in the same processor.

V. CELL-BASED DECOMPOSITION METHOD

A. Decomposition

To overcome the inefficiency of the existing methods in
decomposing heterogeneous porous media, we propose a
cell-based domain-decomposition method. The existing
methods usually decompose a domain first, then recover the
interfaces, and load balance are performed. The interface is
recovered to check load balance again. The recovery of the
interfaces and the load balance is performed iteratively. Un-
like the existing methods, the cell-based method performs
the load balance first based on the total number of fluid cells
and then decomposes the domain into a number of groups �or
subdomains�, each having almost the same fluid cells in that
the difference of fluid cells in each subdomain is either 0 or
1, depending on if the total number of fluid cells is a multiple
of the processor numbers; the interfaces between the subdo-
mains are recovered at last. Thus the task of the cell-based
method is to recover the interfaces rather than the load bal-
ance as in the traditional methods. An example of a three-
dimensional porous medium is used to show how to decom-
pose by using the cell-based method. In this example, the
porous medium is scanned in first from the z direction, then
from the y direction, and finally from the x direction. In the
decomposition, the solid cells are skipped, and only the pore
cells are counted and stored in an ordered one-dimensional
array. The decomposition of the three-dimensional porous
domains turns out to decompose the ordered one-
dimensional array into a number of groups based on the
number of processors. In the one-dimensional array, neigh-
boring cells are no longer known and have to be directed
explicitly using extra neighbor arrays. The spatial location of
each fluid cell in the one-dimensional array is orderly stored
in coordinate matrices. Thus, the coordinates of any fluid cell
can be recovered based on the number of the cell using the

coordinate matrices. Notice that the total number of the fluid
cells may not be a multiple of the number of processors. In
this case, the remainders are distributed further to former
processors. Therefore, the difference of cell numbers in all
the processors is either 0 or 1, an exact load balance.

B. Recovering the interfaces

The fluid domain is split into a number of subdomains,
each being handled by a processor. Because the fluid cells
are stored orderly and connected in a one-dimensional array,
every cell has an ordered number and its coordinate is stored
in coordinate arrays. Hence, every cell can be easily recov-
ered through its ordered number and coordinate arrays.

The recovery of the interface between subdomains is to
recover the coordinates of the first and last cells of the sub-
domain using the coordinate arrays. From the coordinate of
the first cell in the subdomain we can recover the first bound-
ary of the subdomain, and from the coordinate of the last cell
we can recover the second boundary of the subdomain. The
coordinates of the first and last cells in each subdomain have
two situations: on the corners and not on the corners. For the
former situation we take the first cell of the subdomain as an
example. Here we assume that the domain is decomposed
along the x axis. If the first cell is on the corner, it has
coordinates �x1 ,0 ,0�. All cells on the cross section, x=x1,
consist of a boundary of the subdomain. The last cell on the
boundary has a coordinate �x ,Ny −1,Nz−1�, where Ny and Nz

are the number of cells in the y and z directions, respectively,
and all the fluid cells on this boundary have coordinates be-
tween �x,0,0� and �x ,Ny −1,Nz−1�. It is easy to count the
number of fluid cells on the boundary from the coordinate
�x ,0 ,0� to �x ,Ny −1,Nz−1�. The number of fluid cells on the
boundary is all the fluid cells to be communicated with their
neighbor. Since these boundary cells are also stored orderly
and connected in the memory, the memory positions of the
boundary cells to be communicated can be traced through the
ordered number of the first cell and the number of fluid cells
on the boundary. Thus, the recovery real interface is a
straight line in two dimensions as shown in Fig. 1�a�, and it
is a plane in three dimensions as shown in Fig. 2�a�. In Figs.
1 and 2, the fluid cells are marked by white and solid cells by
gray. The boundary cells labeled B0 belong to subdomain
PE00 and those by B1 belong to subdomain PE01.

If the first and last cells on a interface are not in the
corners but in an arbitrary position, they can still be recov-
ered using the ordered numbers and the coordinate arrays.
We still take the first cell in a subdomain distributed along
the x axis as an example and assume that the subdomain is
distributed to processor I. The ordered number of the first
cell of the subdomain is known after decomposition, and its
coordinate �x1 ,y1 ,z1� can be recovered using the coordinate
arrays. The coordinates of two cells opposite the first cell
must be on its neighbor surfaces �x1−1 ,y1 ,z1� and �x1

+1 ,y1 ,z1�. Thus, all the fluid cells between �x1 ,y1 ,z1� and
�x1+1 ,y1 ,z1� are on the boundary of processor I, and all the
fluid cells between �x1−1 ,y1 ,z1� and �x1 ,y1 ,z1� are on the
boundary of processor I-1. The number of the fluid cells on
the two boundaries can be counted through the coordinates
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of the first cell and its two opposite cells, respectively. Figure
1�b� shows an irregularly folded line in two dimensions, and
Fig. 2�b� shows an irregularly folded surface in three dimen-
sions, in which the interface cells are marked with B, the
starting cells with S, and the ending cells with E. It should be
noted that the boundary cells might be one cell more than
those shown in Fig. 1�a� for two dimensions and one column
�or row� more than those shown in Fig. 2�a� for three dimen-
sions because the diagonal neighboring cells need to be con-
nected in the D3Q19 model. These extra diagonal boundary
cells have been labeled with B* in the figures. Figure 1�c�
shows a typical pattern of a data array, in which the commu-

nication cells between the subdomains are ordered and
closely connected. Likewise, we can recover the ending in-
terface of the subdomain. Thus the interface of every subdo-
main can be recovered using the ordered number of the start-
ing and ending cells and the coordinate arrays. It should be
mentioned that because all fluid cells are stored orderly and
connected in the memory and the data arrays are distributed
orderly on the processors, the boundary cells to be commu-
nicated between two subdomains are also connected and
nearest as shown in Fig. 1�c�. Hence, data communication
occurs only in the two nearest processors and nearest data
memory. In other words, there is a nearest communication

FIG. 1. �Color online� A typical boundary be-
tween the subdomains in two dimensions. The
fluid cells are marked by white and the solid cells
are marked by gray. The boundary cells labeled
by B0 belong to the subdomain PE00 and those
by B1 belong to subdomain PE01. �a� The inter-
face when starting and ending cells are at the cor-
ners, �b� the interface when starting and ending
cells are not at the corners, and �c� a typical pat-
tern of a data array.
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connection. Furthermore, because the boundary cells from
the first to the last cells on an interface are still stored orderly
in the one-dimensional array and exchange data with one of
the nearest neighbors, all fluid cells to be communicated are
picked up once and no pointer jumps occur to pick up data in
memory. Hence, the communication pattern is regular.

Another advantage of the proposed method is its suitabil-
ity for arbitrary geometries as the neighbors of each cell are
defined in an arbitrary manner and the domain decomposi-
tion is to decompose a one-dimensional array. Compared
with the recursive bisection techniques, the proposed method
has the advantages of exact load balance. Since all cells on
the interface are ordered and closely connected in the
memory, there is a regular communication pattern. Like the
slice method—the communication connections occur only in
the nearest processor and no other processors need to be
communicated. In fact the proposed method keeps the main
advantages of the slice method—the regular communication
pattern and the nearest communication connection—while

overcomes its disadvantage of load imbalance for complex
geometries. Furthermore, the proposed method does not need
resorting and researching operations. Therefore, it produces a
decomposition that is comparable to and in most cases better
than those produced by the multilevel partitioning algo-
rithms. Finally, the method is simple and efficient as it does
not require extra CPU time to optimize the decomposition of
the domain. The core memory required by the proposed
method is almost optimal as it only stores, calculates and
communicates the fluid cells.

VI. RESULTS AND DISCUSSIONS

A. Computational environment

Numerical experiments were conducted on a Silicon
Graphics Origin 2000 machine and a Silicon Graphics Altix
3700 machine. The specifications of the two systems are
shown in Table I.

FIG. 2. �Color online� A typical boundary between the subdomains in three dimensions. The fluid cells are marked by white and the solid
cells are marked by gray. The boundary cells labeled B0 belong to subdomain PE00 and those by B1 belong to subdomain PE01. �a� The
interface when the starting and ending cells are at the corners and �b� the interface when the starting and ending cells are not at the corners.

TABLE I. Specifications of the two parallel machines.

Machine SGI Origin 2000 SGI Altix 3700

Number of processors 128 MIPS R12000 256 Intel Itanium 2

Cache hierarchy Level 1 data 32 kbytes Level 1 data 16 kbytes

Level 1 instruction 32 kbytes Level 2 256 kbytes

Level 2 8 Mbytes Level 3 3 Mbytes

Peak performance 800 megaflops 5.2 gigaflops

Clock speed 400 MHz 1.3 GHz

Global memory 100=128�0.8 gigaflops 384=256�1.5 gigaflops

Operating system Irix Linux
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The parallelization is accomplished using a simple single-
program multiple-data �SPMD� model. The data are divided
into spatially continuous blocks along the x axis; multiple
copies of the same program run simultaneously, each operat-
ing using its own block of data. All data depend on the re-
sults obtained from previous computations in other proces-
sors. At the end of each iteration, the data of the folded
surfaces on the boundaries between the blocks are passed
within the appropriate processors. By using a ghost layer of
lattice cells surrounding the subdomain, the propagation step
can be isolated from the data in the exchanging step. Ghost
cells are cells that the processor needs to compute all its
stencils, but not the ghost cells themselves; the ghost cells
are computed in the previous step by the neighboring proces-
sors. Prior to the propagation step, the processor must re-
ceive the data for the ghost layer from its neighboring pro-
cessors; the data in the interface are then sent to the ghost
layer of the neighboring processors.

The message passing interface �MPI� �48� is used for data
transfer. The MPI�Send and the MPI�Recv functions are used
to transfer data at the ghost cells between the processors.
These blocking functions do not return until the communica-
tion is completed. The blocking communications have two
drawbacks: deadlocks and parallel inefficiency. To prevent
deadlocks happening, we authorize the odd-numbered pro-
cessors to MPI�Send first and MPI�Recv second, and autho-
rize the even-numbered processors to MPI�Recv first and
MPI�Send second when blocking communications are used.
To overcome the two drawbacks, nonblocking communica-
tions MPI�Isend and MPI�Irecv are also used for comparison.
In all the simulations, the periodic boundary is solved trans-
parently in that the processor handling the top boundary sim-
ply exchanges data with the processor handling the bottom
boundary. The flow is driven by a pressure difference applied
to one direction and the prescribed pressure is solved using
the method given in �16�.

The results are obtained with �=1.0. The simulations are
terminated when flow reaches steady state, and the criterion
of checking the flow to have reached steady state is

�
i=1

�u�xi,t + 1� − u�xi,t��
�u�xi,t + 1��

	 10−10, �8�

where the summation is over all the fluid cells. In all simu-
lations, it usually takes a few thousand iterations to reach the
steady state.

B. Parallel performance

The parallel computation is analyzed by a speedup factor
S and a efficiency E �42�:

S = T1/Tn, En = T1/�nTn� , �9�

where T1 is the execution time for serial algorithm using a
single processor and Tn is the execution time for parallelized
algorithm using n processors.

Figures 3�a�–3�c� show the total execution time Tn, the
speedup S, and the efficiency E, respectively, as a function of
processor numbers using the Origin 2000 for different do-

main sizes. For a given domain size, the total execution time
decreases nonlinearly while the speedup tends to saturate as
the number of processors increases; the speedup saturates
slowly as the domain size increases. Furthermore, a larger
domain of the same problem yields a higher speedup and
efficiency using the same number of processors, although
both speedup and efficiency continue to decreases as the
number of processors increases. This performance is in
agreement with the Amdahl’s law. The dependence of the
efficiency E on processor number also varies with the do-
main size, increasing for larger domains and oscillating
around one for smaller domains. In all the examples, the
speedup is less than unity, while the efficiency could be
higher than unity because of the better use of cache memory,
particularly when using a few processors for a small domain.

Figure 4 shows the results obtained using Altix 3700. The
performance of the Altix 3700 is also in a good agreement
with the Amdahl’s law, particularly for the large domain
where speedup and efficiency are similar for the two sys-
tems. The difference is for the small domain, where the
speedup in the Origin 2000 tends to saturate quicker and is
therefore less efficient than the Altix 3700. This is probably
due to the different computational and communicational
speeds of the two systems. The computational and commu-
nicational speeds of the Altix 3700 are faster; the influence
of cache memory is thus less substantial.

C. Comparison with existing methods

Parallel lattice Boltzmann simulation of flow in porous
media has been reported �35,40,49� using different domain-
decomposition methods. The proposed method is compared
with them to show the improvement. Kandhai et al. �40�
propose an improved decomposition approach based on or-
thogonal recursive bisection �ORB� and demonstrate its su-
periority. We therefore only show the comparison with ORB.
We take the example studied by Kandhai et al. �40�, which
consists of 139�380�50�2.64�106 cells, to compare
with two of ours examples, comprising 3.0�106 and
1.26�106 cells, respectively. Table II shows the comparison
of the speedup factor, defined as T4 /T20, of the proposed
method and ORB. The improvement of the proposed method
over ORG in terms of the speed factor is significant for both
small and big problems.

Pohl et al. �49� used the SGI Altix 3700 to simulate tur-
bulence and metal foams. Here we compare the performance
of the proposed method with theirs. The comparison is for
the variation of million lattice site updates per second
�MLup/s�, the �number of time steps���number of lattice
sites�/�execution time�, with processor numbers. Figure 5�a�
shows the result for an example consisting of 3.0�106 cells.
The speedup factor of the proposed method using 64 proces-
sors for this problem is 50, slightly slower than the speedup
factor of 58 reported in Pohl et al. �49� �Fig. 15� for problem
with 4.2�106 cells. The less speedup of the proposed
method for this example is due to the domain size difference
rather than the method itself, as it has been shown in previ-
ous examples that the speedup factor of the proposed method
increases as the domain size increases.
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The performance of the proposed method in SGI origin is
compared with that reported in Pan et al. �35� in terms of
execution time taken by per 300 iterations �time steps�. Fig-
ure 5�b� shows that the execution time used by the proposed
method for the problem with 2.25�105 cells decreases from
617 s when using one processor to 44 s when using 16 pro-
cessors, giving a speedup factor 14. While the corresponding
execution time taken by the RB method for the problem with
9.5�104 cells �Fig. 11 of Pan et al. �35�� is 400 s and 90 s,
respectively, giving a speedup factor of 4.6. Furthermore, the
proposed method needs less execution time when using 16
processors for the larger domain. Again, the proposed
method has less overhead communication and/or better load
balance and therefore has high speedup.

D. Comparison with theoretical efficiency

The theoretical efficiency can be estimated from

E =
Tcal

Tcal + Tcom
= �1 +

Tcom

Tcal
�−1

, �10�

where Tcom and Tcal are the communicational and computa-
tional times, respectively. Tcom is expected to be proportional
to the number of fluid cells in the subdomains, and Tcal is
proportional to the number of communicating fluid cells. The
following relations can be obtained:

Tcal = 
1
N3

nU
, Tcom = 2
2N2/V , �11�

where 
1 and 
2 are porosities in three dimensions and two
dimensions respectively, U is the computational speed, and V
is the communicational speed. Inserting the above equations
into Eq. �10� gives

E = �1 +
2
2nU


1NV
�−1

. �12�

For a given example, 
1, 
2, U, and V are constant, and E
is therefore only dependent on n and N. Figure 6 compares
the theoretical E and the measured E from Fig. 3�c� assum-
ing 
1=
2 and U=2V /3. They are in good agreement. Equa-
tion �12� also indicates that the proposed method is more
efficient when the ratio of the computational and communi-
cational time is small. This may explain why the Altix 3700
has a higher efficiency than the Origin 2000 when using less
few processors.

E. Flow field and permeability

One purpose of simulating pore-scale flow in porous me-
dium is to calculate its flow field and permeability. The per-
meability of a porous medium is defined in the Darcy’s law
as �50�

FIG. 3. The performance with SGI Origin 2000. �a� The total execution time, �b� the speedup, and �c� the efficiency.
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�u� = −
K

�
��P − �g� , �13�

where �u�, �, and � are the average velocity, kinetic viscosity,
and fluid density, respectively, K is the permeability, P is
pressure, and g is the gravitational vector.

Flow in a rectangular duct is performed first to test the
model and the results are in good agreement with the theo-
retical solution. We then use the model to simulate flow in a
column packed with glass beads. The porosity of the column
was 0.37. Prescribed pressures are applied to the left and
right sides of the column, and other sides are treated as pe-
riodic boundaries. The permeability is calculated from the
simulation when flow reaches steady state. We also drive the
fluid flowing in other two directions of the column to calcu-
late the corresponding permeabilities. The averaged perme-
ability over the three directions is 7.4�10−9m2 with a devia-
tion of ±0.2�10−9 for the Origin 2000 and ±0.15�10−9 for
the Altix 3700. This agrees well with experimental result
�14�.

VII. CONCLUSIONS

The work reported in this paper proposes a cell-based
method to decompose a domain for parallel computation of
fluid flow in porous media. The existing methods usually
decompose a domain first and then recover the interfaces; the
load balance is performed at last. The proposed method dif-
fers in that it performs the load balance first based on the
total number of fluid cells and then decomposes the domain;

FIG. 4. Performance with SGI Altix 3700. �a� The total execution time, �b� the speedup, and �c� the efficiency.

TABLE II. A comparison of the speedup between the ORB and
the proposed methods.

Number of
Processors

ORB
�2.64�106 cells�

Cell-based
�1.26�106 cells�

Cell-based
�3�106 cells�

2 0.49

4 1 1 1

8 1.38 4.41

9 1.95

10 2.05 9.77

12 2.26

16 2.85

20 3.27 6.54 18.04

24 5

30 8.74 20.47

DOMAIN-DECOMPOSITION METHOD FOR PARALLEL… PHYSICAL REVIEW E 72, 016706 �2005�

016706-9



the interfaces are recovered at last. As a result, the task of the
proposed method is to recover the interfaces rather than the
load balance as in the existing methods. Without special
treatment, the proposed method can combine with the use of
sparse matrix to optimize memory use. The proposed method
is flexible and reliable for modeling flow in complex geom-
etry. It has the following advantages: �i� automatically de-
composes a complex flow domain, �ii� optimizes computer
memory using sparse matrix that only store fluid cells, �iii�

exact load balance in which the difference of fluid cells in
each processor is 0 or 1, �iv� simple communication pattern
and nearest communication connection among processors,
and �v� high parallel efficiency in agreement with the theo-
retical efficiency.

The numerical experiments show that the decomposition
produced by the proposed method is at least comparable to
and in most cases better than that produced by the multilevel
partitioning algorithms in terms of load balance, regular
communication pattern, and nearest communication connec-
tion. Moreover, the proposed method is easy to code for flow
in complex geometries. The examples shown in this paper
are restricted to the LBM simulation of flow in porous me-
dia, but the method itself is applicable to other traditional
numerical methods on either structured or unstructured grids.
The inherent advantage of the proposed method makes
searching, sorting, and optimizations no longer required as in
the conventional domain-decomposition methods; the pro-
posed method can evenly decompose a domain in just one
scan.
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